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We introduce a method to visualize dependencies between two time series by applying the concept of cross
recurrence plots to the local ordinal structure. We derive a measure of the coupling strength which is robust
against observational noise, nonlinear distortion of the amplitude, and low-frequency trends. Connections to
the instantaneous phase and the determination of phase coupling of two coupled Rössler systems in the
standard and funnel regimes are shown. An application to electroencephalogram data demonstrates that the
method is robust with respect to artifacts.
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I. INTRODUCTION

In the analysis of coupled systems various techniques
have been developed to detect cooperative behavior from
observed time series �1–3�. Depending on the nature of the
systems, there are different requirements to the methods.
While linear methods based on correlations are not sufficient
to deal with nonlinear dependencies, most nonlinear methods
require sufficiently long stationary time series. For the case
that stationarity holds only for short observation time, cross
recurrence plots �CRPs� were introduced �4,5�. However, this
method is based on taking distances of trajectories, which is
conceptually difficult on physically different systems. A gen-
eral problem in studying multivariate data from natural sys-
tems, for instance electroencephalogram �EEG� data, is that
measurement conditions change with time. Among others
offset and amplitude range can vary differently within the
channels �cf. Fig. 4�.

To overcome this problem we consider a special symbolic
dynamics of the system, where the time series is encoded by
order patterns. This yields further symbol sequences, which
are invariant with respect to certain distortions in amplitude.
With this symbolic dynamics a complexity measure was al-
ready proposed �6� and successfully applied to epileptic sei-
zure detection �7�. Moreover, a distance between time series
was introduced to study similarities and dissimilarities be-
tween EEG channels �8�. Following the idea of CRPs we
introduce a visualization tool based on the recurrence of or-
der patterns. Similarly to the CRPs we obtain different struc-
tures such as dots and lines, from which conclusions about
the temporal behavior of, e.g., coupling strength and delay,
can be drawn. In this context a sensitivity of the methodol-
ogy to phase coupling is shown.

This paper is organized as follows. First we define the
symbolic dynamics and introduce order recurrence plots. On
coupled oscillators we demonstrate the ability to visualize
and quantify the coupling strength. Finally, we apply the
technique to EEG data.

II. ORDER RECURRENCE PLOTS AND THEIR
QUANTIFICATIONS

A. Symbolic dynamics

Given a dynamical system represented by a one-
dimensional time series �x�t��t the original phase space can
be reconstructed by time delay embedding x��t�= �x�t� ,x�t
+�� , . . . ,x(t+ �D−1��)� for sufficiently high dimension D
�9�. The time delay � can be chosen in an appropriate way.
In this paper we restrict ourselves to D�3. Higher dimen-
sions were also studied, but D=3 gives already convincing
results.

To discuss the order structure of the time series, let us
start with D=2. Two relations between x�t� and x�t+�� are
possible, neglecting equality.1 We denote these relations as
order patterns � and derive the symbol sequence

�x�t� = �0, x�t� � x�t + �� ,

1, x�t� � x�t + �� .
� �1�

This encoding of a trajectory yields a decomposition of the
phase space into two equal areas.

In dimension D=3 there are D!=6 order patterns possible
�Fig. 1�, again neglecting equality. The phase space is de-
composed by three planes into six equivalent regions �Fig.
2�. These planes are defined by x�t�=x�t+��, x�t�=x�t+2��,
and x�t+��=x�t+2��.

These symbol sequences are invariant with respect to an
arbitrary, increasing transformation of the amplitude. More-
over, we are able to compare symbol sequences from physi-
cally different systems, which is an important advantage in
contrast to CRPs. Later on we will also demonstrate robust-
ness against low-frequency trends and strong observational
noise.

B. Order recurrence plots

To visualize the dynamics of phase space trajectories, re-
currence plots were introduced �10�. This idea was further
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1On dynamical systems with continuous distributions of the val-
ues the equality has measure zero and can be neglected. In this
paper the equality has not been separately considered and in the
practical application we test for � and �.
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extended to CRPs to study recurrent dynamics between dif-
ferent systems. Two trajectories are considered as neighbor-
ing if �� 	x��t�−y��t��	 is satisfied, with � a cutoff distance.

We introduce a similar technique, where the neighbor-
hood is defined by the local order structure. Phase space
vectors x��t� and y��t��, of the same or different dynamical
systems, are defined as neighboring if their order patterns
coincide: �x�t�=�y�t��. With this definition we introduce the
order recurrence plot �ORP�

R�t,t�� = �1, �x�t� = �y�t�� ,

0 otherwise,
� �2�

a plot of a Boolean matrix of size M �N, where M,N are the
lengths of the order pattern sequences.

Similarly to the CRPs we observe different structures in
the ORPs. If there are no dependencies the plot is dominated
by single dots �Fig. 3�a��. Strong dependencies yield to diag-
onal lines, where R�t+k , t�+k�=1 for 0�k� l with l the
length of the line. Here the order pattern sequences �x and
�y coincide at a certain period of time. But in contrast to a
CRP, the diagonal lines are also preserved on a time-
dependent distortion of the amplitudes �Fig. 3�b��. On time
series with different time scales we observe curved lines
�Fig. 3�c��, which indicate the lines of synchronization �11�.
In practical time series we normally obtain a mixture of dif-
ferent structures �Fig. 3�d��.

What we get from all these plots is a global impression of
the dynamics of the underlying system. Dependencies over
short as well as long distances are obtained, but often we are
only interested in short-time dependencies. Therefore, we
slightly rewrite �2� in analogy with the close returns plot �12�

R�t,	� = �1, �x�t� = �y�t + 	� ,

0 otherwise,
� �3�

where we focus the study to an area close to the main diag-
onal. Diagonal lines R�t+k , t�+k�=1 are transformed to
horizontal lines R�t+k ,	�=1 and it is more convenient to
study a longer range in time �Fig. 4�.

C. Optimal embedding parameter

To reconstruct the dynamics by time delay embedding x��t�
we have to find a proper �. As an idealization of systems
with periodic behavior, we study a simple harmonic oscilla-
tor, where the trajectory describes an ellipse in phase space.
We have x�t�=A sin�2�t /T�, where A is the amplitude, and T
is the period length.

At D=2 the trajectory crosses every half period the main
diagonal and we get a piecewise constant �x�t�. Indepen-
dently of � we have prob�x�t��x�t+���=prob�x�t��x�t
+���=1/2 and the ORP shows a checkerboard. With � we

control just the time of crossing and with it the initial phase.
However, for practical reasons, especially on noisy signals,
an appropriate � has to be chosen to minimize the number of
false neighbors. For periodic functions we propose �=T /4.

The more interesting case we focus on is D=3. Now the
probabilities of the order patterns depend on the time delay
and with it the ORP. For small embedding delays we almost
obtain upward �x�t�=0 or downward patterns �x�t�=5 and
the ORP does not significantly differ from D=2. But with
increasing embedding delays the other order patterns become
more frequent, where we get uniform distribution at �
=T /3. At this value the trajectory of the harmonic oscillator
is maximally enfolded in this special phase space decompo-
sition �Fig. 2�b�� and it describes a circle on a plane, orthogo-
nal to the main diagonal. With this proper time delay we
obtain distinct diagonal lines as in Fig. 3�b�, consisting of
small squares of length T /6.

D. Recurrence rate

Since the introduction of the recurrence plots, several
measures were defined in the recurrence quantification analy-
sis to describe the underlying system �13,14�. We consider
the simplest quantity and count the number of dots in the
ORP over time t as a function of 	. By analogy we call it the
recurrence rate of order patterns �RR�,

RR�	� = 

t

R�t,	� . �4�

It represents a statistical measure of similarities between two
dynamical systems. In statistics we find a comparable ap-

FIG. 1. Order patterns at embedding dimension D=3.

FIG. 2. Left: Delay embedding of a sine function and decompo-
sition of the phase space by order patterns at dimension D=3.
Right: Same plot with viewing angle in direction of the main
diagonal.
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proach, describing relations between two samples by ordinal
analysis �15�: Two samples �xi�i and �yi�i each of size n bi-
nary relations aij = �1:xi�xj ,−1:otherwise� and bij = �1:yi

�yj ,−1:otherwise� are considered. Kendall’s 	 coefficient is
defined as the excess of concordance aijbij =1 over discor-
dance aijbij =−1

k =

i�j

aijbij

n�n − 1�/2
, �5�

where −1�k�1.

Thus Eq. �4� can be interpreted at D=2 as Kendall’s 	 for
time-dependent samples. Concordance means �x�t�=�y�t
+	� and discordance �x�t���y�t+	�. In contrast to Eq. �5�
we have 0�RR�	��1. In �16� Kendall’s 	 on time series
was already discussed, but with a completely different inten-
tion. To define tests for the fit of models the sum over � with
fixed 	 was analyzed. Here we consider RR�	� as a function
of the time lag 	 between the time series with fixed but
adapted delay embedding parameter �.

III. MEASURE OF PHASE COUPLING

To quantify the strength of coupling we analyze the dis-
tribution of the recurrence rate RR�	� over 	. For strong cou-
pling we get distinct horizontal lines in the ORP, which
yields distinct maxima in RR�	�. For weak coupling RR�	�
tends to a uniform distribution. We normalize the recurrence
rate by rr�	�=RR�	� /
	RR�	� and introduce a coupling in-
dex by means of the Shannon entropy


� = 1 −
− 
	=	min

	max rr�	�ln rr�	�

ln�	max − 	min�
. �6�

This gives 0�
��1, where 
�=0 corresponds to no cou-
pling. The actual maximum of 
� depends on �	min,	max�, if

FIG. 3. ORP on different time
series. �a� Bivariate Gaussian
noise, �b� periodic functions with
time-varying amplitudes and off-
sets, but constant period, �c� peri-
odic functions with decreasing
and increasing period, respec-
tively, and �d� onset of an epilep-
tic seizure on EEG channels F7
and Fz. All plots with embedding
dimension D=3. The embedding
delays are appropriately chosen as
discussed in Sec. II C.

FIG. 4. Same ORP as in Fig. 3�d� but now as a function of t and
	 and with a longer range in time.
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one or more maxima with a distance of a mean recurrence
time are contained.

As Fig. 2 already indicates the order patterns can be con-
sidered as a discretization of an instantaneous phase. In the
appendix it is shown for D=3 that this phase is given as

tan ���t�
�3

=
x�t + 2�� − x�t�

x�t + 2�� − 2x�t + �� + x�t�
, �7�

the angle between first and second order differences. A har-
monic oscillator describes an ellipse in this phase space and
�� is well defined. On more complex oscillators like the
Rössler system this phase space also exhibits a clear oscilla-
tion around the origin even in the funnel regime. Thus we
expect a sensitivity of 
� to phase coupling.

A common approach to introduce a phase is based on the
analytic signal �17�

z�t� = x�t� + ix̃�t� = A�t�ei�H�t�. �8�

To define a coupling index the distribution of the instanta-
neous phase differences ��H�t�= ��H

1 �t�−�H
2 �t�� mod 2�

can be analyzed by means of the Shannon entropy �18�


H = 1 − SH/Smax, �9�

where SH is the entropy of the distribution of ��H�t� and
Smax=ln m the maximum entropy on m bins. However, this
classical interpretation of a phase holds only for narrowband
signals.

For non-phase-coherent oscillators an alternative method
was introduced by the curvature of an arbitrary curve �19,20�
with �t�=arctan ẋ�t� / ẏ�t�. But this approach is restricted to
systems where we are able to obtain at least two components.
In �21� this idea was adopted to introduce a phase by the
curvature of an analytic signal �8�

�c�t� = arctan
ẋ̃

ẋ
, �10�

where just as in Eq. �7� only a single component is needed.
Analogously to 
H the coupling strength is calculated from
the phase differences ��c�t�= ��c

1�t�−�c
2�t�� mod 2� by

means of Shannon entropy


c = 1 − Sc/Smax, �11�

with Sc the entropy of the distribution of ��c�t�.

A. Detection of coupling in model systems

In a first example we consider two coupled Rössler sys-
tems

ẋ1,2 = − �1,2y1,2 − z1,2 + k�x2,1 − x1,2� ,

ẏ1,2 = �1,2x1,2 + ay1,2,

ż1,2 = b + z1,2�x1,2 − c� , �12�

in the simple phase-coherent regime �a=0.15, b=0.2, c=10�.
They are diffusely coupled with strength k and their frequen-
cies are detuned by �1,2=�±��. The equations are numeri-
cally solved with �t=0.05. In the time delay embedding we
obtain a well defined oscillation around the main diagonal
�Fig. 5�. Depending on the coupling strength we obtain the

FIG. 5. Time delay embedding of the Rössler system with �
=1.9 and its decomposition by order patterns equivalent to Fig. 2.

FIG. 6. ORP of the x compo-
nents of two coupled Rössler sys-
tems with detuned frequencies
�1,2=1±0.015 at different cou-
pling strength k and correspond-
ing recurrence rate rr�	�.
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phenomena of phase synchronization �PS�, where the phase
difference is bounded, even in the case of detuned frequen-
cies �22�. The transition from non-PS to PS can also be seen
from ORPs. For weak coupling the phases are not locked and
we get drifting lines �Fig. 6, upper panel�. With increasing
coupling strength the phases get almost locked, but the lines
are interrupted by phase jumps �Fig. 6, middle panel�. For
sufficiently high coupling we obtain PS and the order pat-
terns of both oscillators coincide, where we get more or less
straight lines �Fig. 6, lower panel�. In contrast to this CRPs
visualize recurrent amplitudes. Since the phases are synchro-
nized and not the amplitudes we obtain only short lines in
CRPs. In �23, Sec. 2.6� it was demonstrated that CRPs are
not appropriate to distinguish between PS and non-PS on
Rössler systems. If we study the coupling on a whole range
of parameters ��� ,k� we obtain an area of phase locking,
called the Arnold tongue �Fig. 7�. This coincides also with
results from �22�. Although the oscillators are coupled by the
x components, we obtain a similar plot for the y and z com-
ponents �not shown here�. If we calculate 
H on the z com-
ponent we have to take care, because of the different origin.
However the ORP can be calculated straightforward with the
same parameters as on the x and y components. If we add
observational noise to the time series the area of phase lock-
ing is well preserved, even at a signal-to-noise ratio of
�x /�noise=1/3 �Fig. 8�. Here 
� clearly outperforms 
H.

In a second example we consider the more challenging
funnel regime of the Rössler system, where we have no
straightforward phase definition. The parameter a in �12�
governs the topology of the attractor. Above a critical value
the trajectory does no more cycle around an origin in the
x-y plane �Fig. 9, upper panel�. However, there is an appro-
priate time delay embedding of the attractor, where the tra-
jectory cycles around the main diagonal �Fig. 9, lower
panel�. Again we observe the transition to PS by growing
horizontal lines �Fig. 10�. This coincides with �20�, where PS
was already shown for this system on the basis of . It is

remarkable that in contrast to the phase-coherent regime
there are no longer horizontal lines beside 	�0 and with it
no further distinct peaks in the recurrence rate. This results
from the rather broad distribution of the time scale of one
cycle. The irregular structure of the horizontal lines is also an
indicator of different time scales, where a closer examination
of Fig. 10 would show smaller and larger blocks. The size
depends on the length of the cycles, wherefore all blocks are
nearly equal in the coherent case. Moreover a much stronger
coupling k is needed to obtain PS in the noncoherent regime.

B. An application to EEG signals

Several neurological diseases such as epilepsy or Parkin-
son’s disease manifest in a synchronization of neuronal
groups. The specific type of phase synchronization has been
discussed in �24,25� to detect seizure activity. On intracranial
EEG data the phenomenon of phase locking during seizures
were shown. Here, we present the concept of ORP on scalp
EEG data, which are more susceptible to artifacts.

To get time-dependent coupling indices 
��t�, 
H�t�, and

c�t� we study the time series in a sliding window analysis.
In the first case we start with the calculation of R�t ,	� over
the whole time t. Next, the recurrence rate is calculated in
consecutive overlapping frames of length L

RR�t,	� = 

t�=t

t+L

R�t�,	� , �13�

and from Eq. �6� we get 
��t�. In the second case a mean-
ingful phase is only given on narrowband signals. For this
reason the EEG signals are band-pass filtered. Performing
Eq. �9� on the filtered signals in a sliding window of length L
gives 
H�t�. In the third case the analytic signal is determined
over the whole time series without any preprocessing and the
derivatives are estimated by a Savitzky-Golay filter. Again

c�t� is calculated in a sliding window.

FIG. 7. Coupling indices on two coupled
Rössler systems. �a� 
� and �b� 
H as a function
of coupling strength k and detuning ��. Cou-
pling indices are gray coded, where black corre-
sponds to no coupling. Time series length L
=2000.

FIG. 8. Coupling indices on two coupled
Rössler systems with observational noise
�x /�noise=1/3. �a� 
� and �b� 
H as a function of
coupling strength k and detuning ��. Coupling
indices are gray coded, where black corresponds
to no coupling. Time series length L=2000.
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We consider EEG signals from a 14-year old child with
epileptic disorder. The 19-channel scalp EEG data �interna-
tional 10-20 system� were sampled with 256 Hz sampling
rate and band-pass filtered �0.3–70 Hz�. In Fig. 11 the epi-
leptic seizure onset is shown on two representative EEG
channels. Before the seizure there are no dominant oscilla-
tions and the ORP shows no significant longer lines of syn-
chronization. This behavior changes during the seizure,
where the time series show clear oscillations in the alpha
range ��8–13 Hz, Fig. 11�h��. These oscillations are syn-
chronized, which is well determined by distinct horizontal
lines in the ORP. The resulting coupling strength 
� clearly
reveals the period of the seizure. The time delay is adapted to
a mean frequency in the alpha range, where further tests turn
out that the coupling index is not sensitive to time delays
�=T /3 with corresponding frequency 1/T in the alpha
range. With coupling index 
H of the band-pass filtered sig-
nals �Butterworth filter, 8–13 Hz� we get qualitatively the
same shape as with 
� �Fig. 11�f��, which suggests a syn-
chronization within the alpha range. Without filtering the pe-
riod of seizure activity is not reliable revealed �not shown
here�. Considering 
c preprocessing is not needed and the

seizure is well detected �Fig. 11�g��. In the overall statistics
we get an impression of the power to distinguish between
seizure and no seizure �Fig. 12�. Obviously 
� is most suit-
able to separate both states. On 
H and 
c the overlaps be-
tween both states are clearly larger, what yields to larger
classification errors.

IV. SUMMARY

We have introduced a method to visualize cooperative
behavior between two coupled dynamical systems. The tra-
jectories are encoded by its local ordinal structure. With this
special phase space decomposition we introduce the order
recurrence plots analogously to the idea of cross recurrence
plots. The distribution of recurrence points provides an
evaluation of similarities between both systems and we have
introduced a measure of coupling strength. The potential of
this approach were demonstrated on different model systems,
where we have shown connections to results from phase syn-
chronization analysis. An important advantage is the concep-
tually simple and computationally fast algorithm. Invariance
with respect to an distortion in amplitude and robustness
against trend and noise reveals the method as a helpful tool
in applications. In a first short application EEG data were
successfully analyzed.

Although low dimensions work fine, in future work
higher dimensions are of interest. Furthermore other quanti-
ties from the recurrence quantification analysis have to be
considered, such as average line length or determinism, to
describe different nonlinear phenomena.
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FIG. 9. Upper panel: Projection of the funnel system onto the
x-y plane. Lower panel: Time delay embedding with D=3 and �
=0.9. Parameters are �=1, b=0.1, and c=8.5.

FIG. 10. ORP of two coupled
funnel attractors at different cou-
pling strength k and correspond-
ing recurrence rate rr�	�. Param-
eters are �1,2=1±0.015, a=0.29,
b=0.1, and c=8.5.
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APPENDIX

For dimension D=3 we show connections between an
instantaneous phase and order patterns. Therefore we intro-
duce a cylindrical coordinate system �r ,� ,z� in terms of the
delay embedding coordinates (x�t� ,x�t+�� ,x�t+2��). We
start with a Cartesian coordinate system where one axis is the
main diagonal. This gives the first unit vector e3�= �e1+e2

+e3� /�3. We complete this system taking e2�= �e3−e1� /�2
and e1�= �e1−2e2+e3� /�6 with the transformation

x�

y�

z�
� =  1/�6 − 2/�6 1/�6

− 1/�2 0 1/�2

1/�3 1/�3 1/�3
�x�t�

x�t + ��
x�t + 2��

� .

From this we simply derive the cylindric coordinates as

r cos � = x� = �x�t� − 2x�t + �� + x�t + 2���/�6,

r sin � = y� = �x�t + 2�� − x�t��/�2, z = z�.

With this � can be written in terms of delay coordinates

tan � =
y�

x�
= �3

x�t + 2�� − x�t�
x�t + 2�� − 2x�t + �� + x�t�

,

depending on first and second order differences. If the func-
tion x�t� is sufficiently smooth compared to �, we can

FIG. 11. Coupling of two EEG channels �a�–�c� during onset of an epileptic seizure. �d� ORP with �=2.7 ms and �e� resulting coupling
index 
�. �f� 
H and �g� 
c. All coupling indices with L=2 s. �h� Spectrogram �F�t ,��� of C3, where black indicates high values.

FIG. 12. Frequency distributions of coupling indices before the
seizure t�40 s �thin line� and during the seizure 42� t�58 s
�thick line� from Fig. 11.

VISUALIZATION OF COUPLING IN TIME SERIES BY… PHYSICAL REVIEW E 72, 046220 �2005�

046220-7



approximate x�t+2��−x�t� by ẋ�t+��2� and x�t+2��
−2x�t+��+x�t� by ẍ�t+���2. Thus for �=1

tan ��t� � 2�3
ẋ�t + 1�
ẍ�t + 1�

.

The cylindric coordinate system is oriented with z along
the main diagonal and the order pattern of the delay coordi-
nates is completely determined by �. Therefore the order
patterns can be considered as a discretization of the instan-
taneous phase � into six values.
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